Another ordering of the ten cardinal characteristics in Cichoń's diagram

J. Kellner, S. Shelah, A.R. Tănasie

Research output: Contribution to journalArticlepeer-review

Abstract

It is consistent that in Cichoń's diagram, $$ \aleph_1 < {\rm add}{(\mathcal N)}< {\rm add}{(\mathcal M)}= \mathfrak{b} < {\rm cov} {(\mathcal N)} < {\rm non}{(\mathcal M)} < {\rm cov}{(\mathcal M)} = 2^{\aleph_0}. $$ Assuming four strongly compact cardinals, it is consistent that \begin{align*} \aleph_1 &< {\rm add}{(\mathcal N)} < {\rm add}{(\mathcal M)} =\mathfrak{b} < {\rm cov} {(\mathcal N)} < {\rm non}{(\mathcal M)} &<{\rm cov}{(\mathcal M)}< {\rm non}{(\mathcal N)} < {\rm cof}{(\mathcal M)}= \mathfrak{d} < {\rm cof}{(\mathcal N)} < 2^{\aleph_0}. \end{align*}. This oaper is an application of Boolean Ultrapowers in set theoretical context. The mentioned consistency results extends the famous set theory paper Cichoń's maximum.
Original languageUndefined/Unknown
JournalCommentationes Mathematicae Universitatis Carolinae
DOIs
Publication statusPublished - 2019

Cite this